Bistability: Requirements on Cell-Volume, Protein Diffusion, and Thermodynamics
نویسنده
چکیده
Bistability is considered wide-spread among bacteria and eukaryotic cells, useful, e.g., for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition.
منابع مشابه
Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited.
Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemi...
متن کاملNumerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution
A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...
متن کاملModeling stochastic gene expression in growing cells.
Gene expression is an inherently noisy process. Fluctuations arise at many points in the expression of a gene, as all the salient reactions such as transcription, translation, and mRNA degradation are stochastic processes. The fluctuations become important when the cellular copy numbers of the relevant molecules (mRNA or proteins) are low. For regulated genes, a computational complication arise...
متن کاملSignaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties.
The synaptic signaling network is capable of sophisticated cellular computations. These include the ability to respond selectively to different patterns of input, and to sustain changes in response over long periods. The small volume of the synapse complicates the analysis of signaling because the chemical environment is strongly affected by diffusion and stochasticity. This study is based on a...
متن کاملEmergent Chemical Behavior in Variable-Volume Protocells
Artificial protocellular compartments and lipid vesicles have been used as model systems to understand the origins and requirements for early cells, as well as to design encapsulated reactors for biotechnology. One prominent feature of vesicles is the semi-permeable nature of their membranes, able to support passive diffusion of individual solute species into/out of the compartment, in addition...
متن کامل